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Two problems exist in the current studies on the application of the lattice Boltzmann method �LBM� to
rarefied gas dynamics. First, most studies so far are applications of two-dimensional models. The numbers of
velocity particles are small. Consequently, the boundary-condition methods of these studies are not directly
applicable to a multispeed finite-difference lattice Boltzmann method �FDLBM� that has many velocity par-
ticles. Second, the LBM and FDLBM share their origins with the Boltzmann equation. Therefore, the results of
LBM and FDLBM studies should be verified by the results of the continuous Boltzmann equation. In my
review to date on the LBM studies, it appears that such verifications were seldom done. In this study, velocity
slip and temperature jump simulations in the slip-flow regime were conducted using a three-dimensional
FDLBM model. The results were compared with preceding theoretical studies based on the continuous Bolt-
zmann equation. The results agreed with the theory with errors of a few percent. To further improve the
accuracy of the FDLBM, it seems necessary to increase the number of velocity particles.
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I. INTRODUCTION

Understanding rarefied gas dynamics is crucial in design-
ing microelectromechanical systems �1�. Studies of the lat-
tice Boltzmann method �LBM� and the finite-difference lat-
tice Boltzmann method �FDLBM� as applied to rarefied gas
dynamics started to appear recently �2–15�.

The rarefied gas dynamics are represented properly by the
Boltzmann equation. However, it is an equation in the six-
dimensional �6D� phase space: three-dimensional �3D� ve-
locity space plus 3D position space. In the LBM and
FDLBM, substituting the velocity space by a limited number
of velocity particles transforms the equations to 3D prob-
lems. It has been proved that the LBM and FDLBM are
equivalent to the Navier-Stokes equations within the limits of
a small Knudsen number. Therefore, in an intermediate flow,
where both the continuity flow and the rarefied flow coexist,
the LBM and FDLBM become ideal flow solvers if they can
represent the rarefied gas flow properly.

The author has been studying multispeed FDLBM models
�16–19� because the FDLBM has several advantages over
the LBM. Multispeed thermal models are readily constructed
because the selection of velocity particles is independent
from the lattice configuration. The model can secure numeri-
cal stability by adjusting the time interval. A Nonuniform
grid is available. This study started from the author’s interest
in knowing if the FDLBM can represent the rarefied gas flow
properly.

The current studies of rarefied gas flows have two prob-
lems. First, most studies to date are applications of two-
dimensional �2D� models and the numbers of velocity par-
ticles are small, therefore the boundary conditions are quite
simple. The FDLBM models, especially 3D models, have
many velocity particles and the boundary-condition methods
of the previous rarefied gas studies are not directly applicable
to these models.

Second, the LBM and FDLBM share their origins with
the Boltzmann equation. Therefore, the results of LBM and
FDLBM studies should be verified by the results of the con-
tinuous Boltzmann equation. In my review of LBM studies
to date, it appears that such verifications were seldom done,
although studies of the continuous Boltzmann equation have
been carried out in depth and the data for verification are
extensive.

This study applies the boundary-condition method to mul-
tispeed FDLBM thermal models and conducts velocity slip
and temperature jump simulations using one of the author’s
FDLBM models. The simulation results are compared with
those obtained from the continuous Boltzmann equation to
verify how accurately the FDLBM can simulate rarefied gas
flows and to identify the causes of the discrepancies.

II. RAREFIED GAS FLOW

This study focuses on a rarefied gas flow of Knudsen
number K �the nondimensional parameter of the mean-free
path divided by a characteristic length� of around 0.01–0.1,
the so-called slip-flow regime. In this regime, in the vicinity
of the wall, phenomena peculiar to a rarefied gas flow are
observed. If the wall acts as a diffuse reflection boundary,
velocity slip and temperature jump phenomena occur. These
phenomena have been well understood since the 19th cen-
tury, the era of Maxwell �20–23�. However, it was after
World War II that the quantitative features were made clear.
Many rarefied gas flow studies exist for the continuous Bolt-
zmann equation �24–35�. In particular, there are many stud-
ies �24–31� of the Boltzmann equation with the BGK
�Bhatnagar-Gross-Krook� collision term since the BGK for-
mulation is easy to handle and still retains fundamental fea-
tures of molecular gas dynamics. Therefore, the LBM and
FDLBM, most of which are based on the BGK approxima-
tion, can be verified for their accuracy by comparing them
with previous results. There are good references for rarefied*watari-minoru@kvd.biglobe.ne.jp
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gas flows �36–41�, of which the Sone and Aoki studies are
the author’s primary source.

Figure 1 depicts a typical velocity or temperature profile
between parallel plates simulated in this paper. As the profile
is antisymmetric, only half of it is shown. The lateral axis is
an x position whereas the vertical axis corresponds to the
velocity v along the y axis or the temperature T, depending
on the velocity slip or temperature jump simulation.

The wall emits a local equilibrium distribution irrespec-
tive of the shape of the distribution injected into the wall.
Consequently, the distribution of the gas on the wall is very
distorted. This distorted distribution, moving away from the
wall, is relaxed through particle collisions and approaches a
quasiequilibrium state. The relaxation process, which is de-
picted as a portion B-D, occurs in a thin layer called the
Knudsen layer. The thickness of the layer is of the order of
the mean-free path.

A flow in the quasiequilibrium state is governed by con-
tinuity flow equations such as the Navier-Stokes equations.
Therefore, we can call such an area the “N-S flow area.” We
know from the Navier-Stokes analysis that the velocity or
temperature gradient is constant in a flow between parallel
plates. The linear portion A-B, whose gradient is dv /dx or
dT /dx, corresponds to the N-S flow area.

The gas velocity or temperature on the wall �point D� is
inevitably less than the wall speed or the wall temperature
�point W� because of the conservation of momentum or the
conservation of energy.

The velocity slip vslip and temperature jump Tjump are
defined as the difference between the wall value �point W�
and the cross point �point C� extended from the gradients in
the N-S flow area. Knudsen profiles �v and �T are the dif-
ference between the curved line B-D and the straight line
B-C. According to Sone and Aoki, they are expressed �signs
are changed from the original reference� as

�vslip

�v
� = �1.01619

Y0��� ���

2
K

dv
dx

, �1a�

�Tjump

�T
� = �1.30272

�1��� ���

2
K

dT

dx
. �1b�

The functions Y0��� and �1��� are shown in Fig. 2, where
the variable � is a coordinate in the Knudsen layer measured
normal to the wall and scaled by the Knudsen number

� =
x − L
��

2
K

. �2�

III. THREE-DIMENSIONAL FDLBM MODEL

A 3D thermal model presented in Ref. �18� was chosen
for the simulation studies. The evolution of the distribution
function fki for the velocity particle cki is governed by the
following equation:

� fki

�t
+ cki�

� fki

�r�

= −
1

�
�fki − fki

eq� , �3�

where the variable t is time, r� is the spatial coordinate, and
� is the relaxation-time constant. fki

eq is the local equilibrium
distribution function. The subscript k indicates a group of the
velocity particles whose speed is ck and i indicates the direc-
tion of the particles. The subscript � indicates an x, y, or z
component.

The macroscopic quantities of the density 	, the velocity
u�, and the internal energy e are calculated from the distri-
bution function

	 = �
ki

fki, �4�

	u� = �
ki

fkicki�, �5�

		e +
u2

2

 = �

ki

fki

ck
2

2
. �6�

The pressure P, the temperature T, the ratio of specific
heats 
, the speed of sound cs, the viscosity coefficient �,
and the heat conductivity �� have the following relation-
ships:
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FIG. 1. Typical profile of velocity slip or temperature jump.
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FIG. 2. Normalized Knudsen profiles under diffuse reflection
boundary for the Boltzmann equation with BGK collision.
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P =
2

3
	e , �7�

T =
2e

3
, �8�


 =
5

3
, �9�

cs = �
T , �10�

� =
2

3
	e� , �11�

�� =
10

9
	e� . �12�

These are nondimensional quantities based on the refer-
ence density 	0, the reference length L, and the reference
temperature T0 �where R is the gas constant�,

	, fki, fki
eq by 	0,

cki�,u�,cs, c̄ by �RT0,

e by RT0,

T by T0,

r� by L ,

t,� by
L

�RT0

,

P by 	0RT0,

�,�� by 	0L�RT0. �13�

The local equilibrium distribution function fki
eq is written

as follows:

fki
eq = 	Fk�	1 −

3u2

4e
+

9u4

32e2
 +
3

2e
	1 −

3u2

4e

ckiu

+
9

8e2	1 −
3u2

4e

ckicki�uu� +

9

16e3ckicki�cki�uu�u�

+
27

128e4ckicki�cki�cki�uu�u�u�� . �14�

The velocity particles cki consist of a rest particle and 4
speeds of 32 moving particles. The moving particles are ob-
tained from the unit vectors in Table I multiplied by ck.

The weighting coefficients Fk in the local equilibrium dis-
tribution function are

F0 = 1 − 32�F1 + F2 + F3 + F4� , �15a�

F1 =
1

c1
2�c1

2 − c2
2��c1

2 − c3
2��c1

2 − c4
2�

� �35

6
e4 −

35

36
�c2

2 + c3
2 + c4

2�e3

+
5

24
�c2

2c3
2 + c3

2c4
2 + c4

2c2
2�e2 −

c2
2c3

2c4
2

16
e� , �15b�

F2 =
1

c2
2�c2

2 − c3
2��c2

2 − c4
2��c2

2 − c1
2�

� �35

6
e4 −

35

36
�c3

2 + c4
2 + c1

2�e3

+
5

24
�c3

2c4
2 + c4

2c1
2 + c1

2c3
2�e2 −

c3
2c4

2c1
2

16
e� , �15c�

F3 =
1

c3
2�c3

2 − c4
2��c3

2 − c1
2��c3

2 − c2
2�

� �35

6
e4 −

35

36
�c4

2 + c1
2 + c2

2�e3

+
5

24
�c4

2c1
2 + c1

2c2
2 + c2

2c4
2�e2 −

c4
2c1

2c2
2

16
e� , �15d�

F4 =
1

c4
2�c4

2 − c1
2��c4

2 − c2
2��c4

2 − c3
2�

� �35

6
e4 −

35

36
�c1

2 + c2
2 + c3

2�e3

+
5

24
�c1

2c2
2 + c2

2c3
2 + c3

2c1
2�e2 −

c1
2c2

2c3
2

16
e� . �15e�

There is an arbitrariness in the selection of moving par-
ticle speeds ck. In the original paper �18�, �c1 ,c2 ,c3 ,c4�
= �1.0,2.0,3.0,4.0� was assumed.

In the BGK formulation, the Knudsen number is defined
by the relaxation-time constant and the average particle
speed c̄,

TABLE I. Unit vectors of moving particles, where �= 1+�5
2 , �

= 1
�3

, and �=
�2

�5+�5
.

i:direction Unit vector �cix ,ciy ,ciz�

i=1–8 ���1, �1, �1�
i=9–12 ��0, ��−1 , ���
i=13–16 ���� ,0 , ��−1�
i=17–20 ����−1 , �� ,0�
i=21–24 ��0, �� , �1�
i=25–28 ���1,0 , ���
i=29–32 ���� , �1,0�
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K = �c̄ . �16�

Theoretically the average particle speed is

c̄ =� 16

3�
e . �17�

The arbitrariness in the selection of ck was utilized to
make the FDLBM average particle speed fit the theoretical
value. The FDLBM average particle speed was calculated
using the equilibrium distribution with u�=0.0,

	c̄ = �
ki

fki
eqck. �18�

The speeds ck were determined to give the best match around
e=1.0. The following equations were solved numerically:

c̄ by FDLBM = c̄ by theory at e = 0.5,1.0,1.5,

� c̄

�e
by FDLBM =

� c̄

�e
by theory at e = 1.0. �19�

The result �c1 ,c2 ,c3 ,c4�= �0.818,1.642,2.592,3.800� was
obtained. The comparison of the average particle speed be-
tween the FDLBM and the theory is shown in Fig. 3.

IV. NUMERICAL SIMULATIONS

The velocity slip and temperature jump were examined by
simulating flows between parallel plates �Fig. 4�. In the
simulation, the internal energy e was used instead of the
temperature T and the symbol v was used to express the
velocity uy. The plates were placed at x= �1.0.

In the velocity slip simulation, the plates moved with con-
stant speed �vw= �0.01� in opposite directions along the y
axis. The internal energies of both plates were kept at the
same constant value �ew=1.0�. In the temperature jump
simulation, the plates were at rest �vw=0.0� but the internal
energies were kept at different values �ew=1.0�0.01�.

The evolution Eq. �3� was solved by a finite-difference
equation,

fki
new = fki − ckix

� fki

�x
�t −

1

�
�fki − fki

eq��t . �20�

For the spatial derivative �fki /�x, the second-order upwind
scheme was applied as far as possible to suppress numerical
viscosity. The derivative at position I is calculated as follows
�see Fig. 5�:

� fki

�x
= �

3fki,I − 4fki,I−1 + fki,I−2

2�x
if ckix � 0

3fki,I − 4fki,I+1 + fki,I+2

− 2�x
if ckix � 0.� �21�

For ckix�0, the evolution Eq. �20� with Eq. �21� was ap-
plied up to the wall �I=N�.

For ckix�0 on the wall �I=N�, since the wall is a diffuse
reflection boundary, the distribution is a local equilibrium
distribution fki

eq�	w ,vw ,ew� determined from the wall condi-
tion: the velocity vw and the internal energy ew. The density
	w is determined so as to give a zero-mass flow normal to the
wall, where fki,N is the incident distribution at I=N,

�
ckix�0

fki,Nckix + �
ckix�0

fki
eq�	w,vw,ew�ckix = 0. �22�

The density 	w was easily calculated because the density is a
linear factor in the equilibrium distribution function,

	w = −

�
ckix�0

fki,Nckix

�
ckix�0

fki
eq�	w = 1.0,vw,ew�ckix

. �23�

For ckix�0 in the gas region �I�N�, the evolution Eq.
�20� was applied. However, at the node I=N−1, the second-
order upwind scheme is not applicable. The first-order up-
wind scheme was applied there,

� fki

�x
=

fki,N−1 − fki,N

− �x
. �24�

For ckix�0 and I�N−2, the evolution Eq. �20� with the
second-order upwind Eq. �21� was applied.

The relaxation-time constant was varied as �
=0.01,0.05,0.1 to realize various Knudsen numbers. The
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FIG. 3. Nondimensional average particle speed of the FDLBM
model and the theoretical value.
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FIG. 4. A flow between parallel plates. In the velocity slip simu-
lation vw= �0.01 and ew=1.0. In the temperature jump simulation
vw=0.0 and ew=1.0�0.01.
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FIG. 5. Nodes for the spatial derivative calculation.
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mesh size �x=0.005 �or N=200� was common. However,
the time increment �t was changed according to the
relaxation-time constant to ensure numerical stability: �t
=0.00025 for �=0.01 and �t=0.0004 for �=0.05,0.1.

V. SIMULATION RESULTS

Velocity profiles in a steady state in the velocity slip simu-
lation for �=0.01,0.05,0.1 �K=0.01303,0.06515,0.1303�
are shown in Fig. 6. Linear gradient lines were drawn apply-
ing the least square method to the portion of the N-S flow
area. The velocity slip was obtained as the difference be-
tween the wall speed �vw=0.01� and the speed where the
linear gradient line intercepts the wall. The velocity slip di-
vided by the velocity gradient vslip / dv

dx versus the Knudsen
number is shown in Fig. 7.

The velocity residues �v from the velocity gradient lines
were obtained to depict the Knudsen profile. They are shown
in Fig. 8. If they are normalized according to the theoretical
relationship �1a� and �2�,

�v
��

2
K

dv
dx

vs
x − 1.0
��

2
K

, �25�

they are gathered into a single curve as shown in Fig. 9 with
the theoretical Knudsen profile Y0���.

Internal energy profiles in a steady state in the tempera-
ture jump simulation for various � are shown in Fig. 10. The
internal energy jump divided by the internal energy gradient
ejump / de

dx versus the Knudsen number is shown in Fig. 11.
The Knudsen profiles �e are shown in Fig. 12. If they are

normalized according to the theoretical relationship �1b�and
�2�,

�e
��

2
K

de

dx

vs
x − 1.0
��

2
K

, �26�

they are gathered into a single curve as shown in Fig. 13 with
the theoretical Knudsen profile �1���.

The velocity slip and temperature jump in the FDLBM
simulation show good agreement with the theoretical values.
The error in the velocity slip is 3.5% and the error in the
temperature jump is 2%. The Knudsen profiles in the veloc-
ity slip and the temperature jump coincide with the theoret-
ical profiles.

VI. DISCUSSION

This section discusses how the velocity slip and the tem-
perature jump are determined in the FDLBM simulation. As
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the wall is a diffuse reflection boundary, irrespective of the
shape of the distribution fki,N , �ckix�0� injected into the wall,
the wall emits a local equilibrium distribution fki

eq�	w ,vw ,ew�
for ckix�0. The density 	w is determined so that the mass
flow normal to the wall Mx

wall is zero,

Mx
wall = �

ckix�0
fki,Nckix + �

ckix�0
fki

eq�	w,vw,ew�ckix = 0. �27�

Consequently, the distribution of the gas on the wall is very
distorted. The distribution for ckix�0 is streamed from the
gas region, whereas the distribution for ckix�0 is a local
equilibrium. There is a discontinuity at the plane of ckix=0.
This distorted distribution, on moving from the wall, is re-
laxed through particle collisions and approaches a quasiequi-
librium state in the N-S flow area.

The distribution fki is divided into a local equilibrium part
fki

eq and a nonequilibrium part fki
ne,

fki = fki
eq + fki

ne. �28�

In the N-S flow area in a steady state, a convection process
and a collision process are balanced,

cki�
� fki

�r�

= −
1

�
�fki − fki

eq� . �29�

Consequently, the nonequilibrium part fki
ne is expressed

fki
ne = − �ckix

� fki

�x
 − �ckix

� fki
eq

�x

= − �ckix
dv
dx

� fki
eq

�v
, �30a�

=− �ckix
de

dx

� fki
eq

�e
. �30b�

The y momentum flow Pxy along the x axis and the inter-
nal energy flow Sx along the x axis are given by

Pxy = �
ki

fkickixckiy , �31a�
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Sx = �
ki

fki

ck
2

2
ckix. �31b�

Since the contributions by fki
eq on Pxy and Sx are zero, if the

expression �30� is substituted into Eq. �31�, Pxy and Sx are
expressed as follows in the N-S flow area,

Pxy
NS = −

2

3
	e�

dv
dx

= − �
dv
dx

, �32a�

Sx
NS = −

10

9
	e�

de

dx
= − ��

de

dx
. �32b�

Figures 14 and 15 show Pxy and Sx obtained from the
simulations based on Eq. �31�. The symbols � are the values
in the N-S flow area, calculated using Eq. �32� with the
dv /dx or de /dx values obtained in the simulations.

From the conservation of momentum and energy, Pxy and
Sx are constant from the N-S flow area, through the Knudsen
layer, up to the wall.

If we divide Pxy and Sx into two parts with the flows to the
right and left,

Pxy = Pxy
ne = PxyR

ne + PxyL
ne = �

ckix�0
fki

neckixckiy + �
ckix�0

fki
neckixckiy ,

�33a�

Sx = Sx
ne = SxR

ne + SxL
ne = �

ckix�0
fki

neck
2

2
ckix + �

ckix�0
fki

neck
2

2
ckix,

�33b�

then in the N-S flow area, Eq. �30� indicates that fki
ne is con-

stant and antisymmetric regarding ckix. Consequently, PxyR
ne

= PxyL
ne and SxR

ne =SxL
ne in the N-S flow area.

Figures 16 and 17 show PxyR
ne , PxyL

ne and SxR
ne , SxL

ne obtained
from the simulations based on Eq. �33�. The symbols � are
the values in the N-S flow area, calculated using Eq. �30�
with the dv /dx or de /dx values obtained in the simulations.
These figures demonstrate how the distorted distributions
given at the wall are relaxed in the Knudsen layer.

Next, the momentum flow Pxy
wall and the energy flow Sx

wall

on the wall are considered,
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FIG. 14. Momentum flow obtained from the simulation. Sym-
bols � are the values in the N-S flow area calculated using Eq. �32�.
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FIG. 15. Internal energy flow obtained from the simulation.
Symbols � are the values in the N-S flow area calculated using Eq.
�32�.
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FIG. 16. Momentum flow by nonequilibrium part obtained from
the simulation. Symbols � are the values in the N-S flow area
calculated using Eq. �30�.
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FIG. 17. Internal energy flow by nonequilibrium part obtained
from the simulation. Symbols � are the values in the N-S flow area
calculated using Eq. �30�.
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Pxy
wall = �

ckix�0
fki,Nckixckiy + �

ckix�0
fki

eq�	w,vw,ew�ckixckiy ,

�34a�

Sx
wall = �

ckix�0
fki,N

ck
2

2
ckix + �

ckix�0
fki

eq�	w,vw,ew�
ck

2

2
ckix.

�34b�

The gas velocity and internal energy on the wall �point D�
are inevitably less than the wall values �point W� if the con-
servation of momentum and energy is considered. The veloc-
ity slip and temperature jump have close relationships with
the gradients in the N-S flow area. If the gradients increase,
so do Pxy and Sx, therefore, the velocity slip and the tempera-
ture jump must increase to balance the incoming Pxy and Sx.

To understand this relationship, we consider, for example,
an approximation of the velocity slip, in which the incident
distribution is assumed to be a N-S distribution extending to
the wall. This assumption aims to solve the problem at the
point C instead of D. In fact, this assumption was adopted by
Maxwell and gives a good estimate as long as the Knudsen
number is small.

fki,N = fki
eq + fki

ne = fki
eq�	,vc,e� − �ckix

dv
dx

� fki
eq

�v
,

vc =
dv
dx

� 1. �35�

Simultaneous equations of Mx
wall=0 and Pxy

wall= Pxy
NS are

solved under assumption �35�. The comparison of the dv /dx
between the simulation result and the calculated based on
Maxwell’s assumption is shown in Table II. As expected,
Maxwell’s assumption approaches the simulation as � �or K�
becomes smaller �the point C approaches the point D�.

As we have seen so far, the FDLBM appears to be funda-
mentally right, however, it still has errors of a few percent.
The author believes that the number of velocity particles is
not large enough to express the boundary conditions at the
wall. For example, particles of ckix=0 do not contribute any
effect on Eqs. �27� and �34�, although they represent a range
of particles in the shallow angles to the wall.

To understand this effect, the following moments pointing
to half space were calculated using the FDLBM equilibrium
distribution function,

MxR = �
ckix�0

fki
eqckix, PxyR = �

ckix�0
fki

eqckixckiy ,

SxR = �
ckix�0

fki
eqck

2

2
ckix. �36�

They were compared with the theoretical values. The bold-
face variable dc represents a 3D volume element
�dcxdcydcz�,

MxR = �
cx�0

feqcxdc, PxyR = �
cx�0

feqcxcydc ,

SxR = �
cx�0

feqc2

2
cxdc , �37�

where

feq = 		 3

4�e

3/2

exp�−
3

4e
�c� − u��2� . �38�

	=1.0, e=1.0, and u�=0.0, but for PxyR uy =0.01, were as-
sumed. The results are shown in Table III. The parenthesized
values are the ratios to the theoretical values. The FDLBM
show smaller values by several percent. The author believes
the ratio will approach unity if the number of velocity par-
ticles is increased, consequently, the accuracy of FDLBM
simulation will be further improved. The author has just
started a study using a 2D model to clarify the relationship
between the number of velocity particles and the accuracy of
FDLBM.

VII. CONCLUSIONS

Velocity slip and temperature jump simulations in the
slip-flow regime were conducted using a 3D FDLBM model.
The results were compared with theoretical studies based on
the continuous Boltzmann equation and were checked to see
if the FDLBM possesses fundamental properties of rarefied
gas flows.

�1� The velocity slip and temperature jump in the FDLBM
simulation showed good agreement with the theory. The er-
ror in the velocity slip is 3.5% and the error in the tempera-
ture jump is 2%.

�2� The Knudsen profiles: the residues of velocity and
temperature in the Knudsen layer coincided with the theoret-
ical profiles.

�3� The FDLBM simulation proved a fundamental

TABLE II. Comparison of dv /dx between the simulation and
the calculated value based on Maxwell’s assumption.

� Simulation Maxwell’s assumption

0.01 0.00988 0.00989

0.05 0.00943 0.00948

0.1 0.00892 0.00901

TABLE III. Comparison of the moment contributions pointing
to half space between the theory and the FDLBM.

Moment Theory FDLBM

MxR 0.3257 0.3113 �0.951�
PxyR 0.003257 0.003033 �0.931�
SxR 0.4343 0.4149 �0.955�
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property: the momentum flow or the energy flow is constant
from the N-S flow area, through the Knudsen layer, and up to
the wall.

�4� The FDLBM simulation proved a fundamental prop-
erty: the flow in the N-S flow area is in a quasiequilibrium
state.

�5� The manner in which the distorted distribution given

at the wall is relaxed in the Knudsen layer was demonstrated.
�6� The manner in which the velocity slip or the tempera-

ture jump is determined in the FDLBM simulation was clari-
fied.

�7� To improve the accuracy of the FDLBM rarefied gas
flow simulation, it seems necessary to increase the number of
velocity particles.
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